Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biologicals ; 67: 81-87, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32739117

ABSTRACT

The muscle-relaxing effects of the botulinum neurotoxin (BoNT) serotypes A and B are widely used in clinical and aesthetic medicine. The standard method for measuring the biological activity of pharmaceutical BoNT products is a mouse bioassay. In line with the European Directive 2010/63/EU, a replacement by an animal-free method would be desirable. Whereas the existing approved in vitro methods for BoNT activity measurements are product-specific and not freely available for all users, the "binding and cleavage" (BINACLE) assay could become a widely applicable alternative. This method quantifies active BoNT molecules based on their specific receptor-binding and proteolytic properties and can be applied to all BoNT products on the European market. Here we describe the results of a transferability study, in which identical BoNT samples were tested in the BINACLE assay in four laboratories. All participants successfully performed the method and observed clear dose-response relationships. Assay variability was within an acceptable range. These data indicate that the BoNT BINACLE assay is robust and can be straightforwardly transferred between laboratories. They thus provide an appropriate basis for future studies to further substantiate the suitability of the BINACLE assay for the potency determination of BoNT products.


Subject(s)
Biological Assay/methods , Botulinum Toxins/analysis , Botulinum Toxins/metabolism , Clinical Laboratory Techniques/methods , Animals , Biological Assay/trends , Humans , Mice , Protein Binding , Proteolysis , Reproducibility of Results
2.
Vaccine ; 37(13): 1721-1724, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30826145

ABSTRACT

Tetanus vaccines for human and veterinary use are based on toxoids resulting from a formaldehyde-mediated inactivation of tetanus neurotoxin (TeNT). Due to the high toxicity of TeNT, safety tests are mandatory for each batch of these toxoids. One of the tests addresses the irreversibility of inactivation: The toxoid is stored at 37 °C for 6 weeks and then subjected to in vivo toxicity testing. However, we found that TeNT solutions rapidly lose their activity at 37 °C. Accordingly, any active TeNT molecules arising in the toxoid due to reversion events may no longer be detectable after the 37 °C storage period. Furthermore, there is no evidence that a "reversion to toxicity" has ever been observed for tetanus toxoids during vaccine production. Thus, we conclude that the irreversibility test that is prescribed for human and veterinary vaccines has no relevance for vaccine safety.


Subject(s)
Tetanus Toxoid/adverse effects , Toxicity Tests , Humans , Preservation, Biological , Specimen Handling , Tetanus , Tetanus Toxoid/immunology , Toxicity Tests/methods
3.
Toxicol In Vitro ; 53: 80-88, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30016653

ABSTRACT

Botulinum neurotoxins (BoNTs) inhibit the release of the neurotransmitter acetylcholine from motor neurons, resulting in highly effective muscle relaxation. In clinical and aesthetic medicine, serotype BoNT/A, which is most potent for humans, is widely used to treat a continuously increasing spectrum of disorders associated with muscle overactivity. Because of the high toxicity associated with BoNTs, it is mandatory to precisely determine the potency of every batch produced for pharmaceutical purposes. Here we report a new quantitative functional in vitro assay for BoNT/A. In this binding and cleavage (BINACLE) assay, the toxin is first bound to specific receptor molecules. Then a chemical reduction is performed, thereby releasing the light chain of BoNT/A and activating its proteolytic domain. The activated light chain is finally exposed to its substrate protein SNAP-25, and the fragment resulting from the proteolytic cleavage of this protein is quantified in an antibody-mediated reaction. The BoNT/A BINACLE assay offers high specificity and sensitivity with a detection limit below 0.5 mouse lethal dose (LD50)/ml. In conclusion, this new in vitro assay for determining BoNT/A toxicity represents an alternative to the LD50 test in mice, which is the "gold standard" method for the potency testing of BoNT/A products.


Subject(s)
Botulinum Toxins, Type A/toxicity , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neurotoxins/toxicity , Peptides/metabolism , Animal Testing Alternatives , Animals , Biological Assay , Mice , Protein Binding , Proteolysis , Recombinant Proteins/metabolism , Synaptosomal-Associated Protein 25/metabolism
4.
Toxicol In Vitro ; 34: 97-104, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27032463

ABSTRACT

Botulinum neurotoxins (BoNTs) are the most potent toxins known. However, the paralytic effect caused by BoNT serotypes A and B is taken advantage of to treat different forms of dystonia and in cosmetic procedures. Due to the increasing areas of application, the demand for BoNTs A and B is rising steadily. Because of the high toxicity, it is mandatory to precisely determine the potency of every produced BoNT batch, which is usually accomplished by performing toxicity testing (LD50 test) in mice. Here we describe an alternative in vitro assay for the potency determination of the BoNT serotype B. In this assay, the toxin is first bound to its specific receptor molecules. After the proteolytic subunit of the toxin has been released and activated by chemical reduction, it is exposed to synaptobrevin, its substrate protein. Finally the proteolytic cleavage is quantified by an antibody-mediated detection of the neoepitope, reaching a detection limit below 0.1mouseLD50/ml. Thus, the assay, named BoNT/B binding and cleavage assay (BoNT/B BINACLE), takes into account the binding as well as the protease function of the toxin, thereby measuring its biological activity.


Subject(s)
Botulinum Toxins, Type A/metabolism , Gangliosides/metabolism , Synaptotagmin II/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Biological Assay , Protein Binding , Proteolysis
5.
ALTEX ; 32(2): 137-42, 2015.
Article in English | MEDLINE | ID: mdl-25769344

ABSTRACT

Tetanus neurotoxin (TeNT) consists of two protein chains connected by a disulfide linkage: The heavy chain mediates the toxin binding and uptake by neurons, whereas the light chain cleaves synaptobrevin and thus blocks neurotransmitter release.Chemically inactivated TeNT (tetanus toxoid) is utilized for the production of tetanus vaccines. For safety reasons, each toxoid bulk has to be tested for the "absence of toxin and irreversibility of toxoid". To date, these mandatory tests are performed as toxicity tests in guinea pigs. A replacement by an animal-free method for the detection of TeNT would be desirable. The BINACLE (BINding And CLEavage) assay takes into account the receptor-binding as well as the proteolytic characteristics of TeNT: The toxin is bound to immobilized receptor molecules, the light chains are then released by reduction and transferred to a microplate containing synaptobrevin, and the fragment resulting from TeNT-induced cleavage is finally detected. This assay offers a higher specificity for discriminating between toxic TeNT and inactivated toxoid molecules than other published assays. Validation studies have shown that the BINACLE assay allows the sensitive and robust detection of TeNT in toxoids, and thus may indeed represent a suitable alternative to the prescribed animal safety tests for toxoids from several European vaccine manufacturers. Product-specific validations (and possibly adaptations) of the assay protocol will be required. A European collaborative study is currently being initiated to further examine the applicability of the method for toxoid testing. The final aim is the inclusion of the method into the European Pharmacopoeia.


Subject(s)
Biological Assay/methods , In Vitro Techniques , Metalloendopeptidases/analysis , Tetanus Toxin/analysis , Tetanus Toxoid/chemistry , Animal Testing Alternatives , Animals , Guinea Pigs , Metalloendopeptidases/pharmacology , R-SNARE Proteins/chemistry , Reproducibility of Results , Tetanus Toxin/pharmacology , Toxicity Tests/methods
6.
Biologicals ; 42(4): 199-204, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24882365

ABSTRACT

Tetanus vaccines contain detoxified tetanus neurotoxin. In order to check for residual toxicity, the detoxified material (toxoid) has to be tested in guinea pigs. These tests are time-consuming and raise animal welfare issues. In line with the "3R" principles of replacing, reducing and refining animal tests, the "binding and cleavage" (BINACLE) assay for detection of active tetanus neurotoxin has been developed as a potential alternative to toxicity testing in animals. This in vitro test system can discriminate well between toxic and detoxified toxin molecules based on their receptor-binding and proteolytic characteristics. Here we describe an international study to assess the transferability of the BINACLE assay. We show that all participating laboratories were able to successfully perform the assay. Generally, assay variability was within an acceptable range. A toxin concentration-dependent increase of assay signals was observed in all tests. Furthermore, participants were able to detect low tetanus neurotoxin concentrations close to the estimated in vivo detection limit. In conclusion, the data from this study indicate that the methodology of the BINACLE assay seems to be robust, reproducible and easily transferable between laboratories. These findings substantiate our notion that the method can be suitable for the routine testing of tetanus toxoids.


Subject(s)
Proteolysis , Tetanus Toxoid/toxicity , Toxicity Tests/standards , Animals , Feasibility Studies , Guinea Pigs , Internationality , Laboratory Proficiency Testing , Limit of Detection , Protein Binding , Reproducibility of Results , Technology Transfer , Tetanus Toxin/isolation & purification , Tetanus Toxin/metabolism , Tetanus Toxoid/metabolism , Tetanus Toxoid/standards , Toxicity Tests/methods
7.
Vaccine ; 31(52): 6247-53, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24156922

ABSTRACT

Tetanus toxoids (i.e. chemically inactivated preparations of tetanus neurotoxin) are used for the production of tetanus vaccines. In order to exclude the risk of residual toxicity or of a "reversion to toxicity", each batch of tetanus toxoid is subject to strict safety testing. Up to now, these prescribed safety tests have to be performed as in vivo toxicity tests in guinea pigs. However, as animal tests are generally slow, costly and ethically disputable, a replacement by an in vitro method would be desirable. A suitable alternative method would have to be able to sensitively detect already low concentrations of active tetanus neurotoxin in matrices containing large amounts of inactivated toxoid molecules. We have developed a method which detects active tetanus neurotoxin molecules based on their specific receptor-binding capacity as well as their proteolytic activity. By taking into account two relevant functional characteristics, this combined "BINding And CLEavage" (BINACLE) assay more reliably discriminates between toxic and detoxified molecules than other in vitro assays which solely rely on one single toxin function (e.g. endopeptidase assays). Data from an in-house validation show that the BINACLE assay is able to detect active tetanus neurotoxin with a detection limit comparable to the in vivo test. The sensitive detection of active toxin which has been spiked into toxoid samples from different manufacturers could also be demonstrated. Specificity and precision of the method have been shown to be satisfactory. The presented data indicate that for toxoid batches from some of the most relevant European vaccine manufacturers, the BINACLE assay may represent a potential alternative to the prescribed animal safety tests. In addition, this novel method may also provide a convenient tool for monitoring batch-to-batch consistency during toxoid production.


Subject(s)
Technology, Pharmaceutical/methods , Tetanus Toxin/metabolism , Tetanus Toxin/toxicity , Tetanus Toxoid/adverse effects , Tetanus Toxoid/isolation & purification , Toxoids/metabolism , Toxoids/toxicity , Sensitivity and Specificity , Tetanus Toxoid/standards
8.
Toxicol In Vitro ; 24(3): 988-94, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20036726

ABSTRACT

Assays for the detection of tetanus neurotoxin (TeNT) are relevant for research applications as well as for the safety testing of tetanus vaccines. So far, these assays are usually performed as toxicity tests in guinea pigs or mice. The alternative methods described to date were mostly based on the detection of the toxin's proteolytic activity. However, these endopeptidase assays turned out to be unreliable because they only measure the enzymatic activity as sole determinant of tetanus toxicity, while not taking into account other parameters like the toxin's capacity to bind to target cells. In order to better reflect the in vivo situation of a tetanus infection, we have linked an endopeptidase assay to a ganglioside-binding step. The resulting method, which offers a unique combination of two functionally linked assays, detects those TeNT molecules only which possess both a functional binding domain as well as an active enzymatic domain. Our results demonstrate that this assay is able to reliably detect TeNT, and therefore might provide a basis for the replacement of the animal tests for detection of tetanus toxicity. Moreover, the assay concept could also be useful for in vitro toxicity measurements of other toxins with similar subunit structures.


Subject(s)
Endopeptidases/metabolism , Gangliosides/metabolism , Tetanus Toxin/toxicity , Animals , Dose-Response Relationship, Drug , Indicators and Reagents , Mice , R-SNARE Proteins/metabolism , Tetanus Toxoid/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...